pandas: to_numeric() for Safe Conversion of Strings to Numbers in Pandas#
pandas.to_numeric(arg, errors='raise', downcast=None, dtype_backend=<no_default>)
In pandas, pandas.to_numeric()
allows you to convert a column or Series of strings to numeric values (integers or floats).
Basic usage:
>>> import pandas as pd
>>> s = pd.Series(['1.0', '2', -3])
>>> pd.to_numeric(s)
0 1.0
1 2.0
2 -3.0
dtype: float64
>>> pd.to_numeric(s, downcast='float')
0 1.0
1 2.0
2 -3.0
dtype: float32
>>> pd.to_numeric(s, downcast='integer')
0 1
1 2
2 -3
dtype: int8
>>> pd.to_numeric(s, downcast='signed')
0 1
1 2
2 -3
dtype: int8
>>> pd.to_numeric(s, downcast='unsigned')
0 1
1 2
2 3
dtype: uint8
>>> s = pd.Series(['apple', '1.0', '2', -3])
>>> pd.to_numeric(s, errors='coerce')
0 NaN
1 1.0
2 2.0
3 -3.0
dtype: float64
>>> pd.to_numeric(s, errors='coerce').fillna(0)
0 0.0
1 1.0
2 2.0
3 -3.0
dtype: float64
For more information about nullable types, refer to the following article:
Downcast to nullable (can be marked as NaN/
>>> s = pd.Series([1, 2, 3, None], dtype="Int64")
>>> pd.to_numeric(s, downcast="integer")
0 1
1 2
2 3
3 <NA>
dtype: Int8
>>> s = pd.Series([1.1, 2.2, 3.3, None], dtype="Float64")
>>> pd.to_numeric(s, downcast="float")
0 1.1
1 2.2
2 3.3
3 <NA>
dtype: Float32